The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology.
نویسندگان
چکیده
Electrostatics plays a fundamental role in virtually all processes involving biomolecules in solution. The Poisson-Boltzmann equation constitutes one of the most fundamental approaches to treat electrostatic effects in solution. The theoretical basis of the Poisson-Boltzmann equation is reviewed and a wide range of applications is presented, including the computation of the electrostatic potential at the solvent-accessible molecular surface, the computation of encounter rates between molecules in solution, the computation of the free energy of association and its salt dependence, the study of pKa shifts and the combination with classical molecular mechanics and dynamics. Theoretical results may be used for rationalizing or predicting experimental results, or for suggesting working hypotheses. An ever-increasing body of successful applications proves that the Poisson-Boltzmann equation is a useful tool for structural biology and complementary to other established experimental and theoretical methodologies.
منابع مشابه
PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
Continuum solvation models, such as Poisson-Boltzmann and Generalized Born methods, have become increasingly popular tools for investigating the influence of electrostatics on biomolecular structure, energetics and dynamics. However, the use of such methods requires accurate and complete structural data as well as force field parameters such as atomic charges and radii. Unfortunately, the limit...
متن کاملFast Boundary Element Method for the Linear Poisson-Boltzmann Equation
This article summarizes the development of a fast boundary element method for the linear Poisson-Boltzmann equation governing biomolecular electrostatics. Unlike previous fast boundary element implementations, the present treatment accommodates finite salt concentrations thus enabling the study of biomolecular electrostatics under realistic physiological conditions. This is achieved by using mu...
متن کاملSMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation
SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a ...
متن کاملNew solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics
Article history: Received 11 September 2013 Received in revised form 3 May 2014 Accepted 3 July 2014 Available online 16 July 2014
متن کاملBiomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs
We present simulations of biomolecular electrostatics at a scale not reached before, thanks to both algorithmic and hardware acceleration. The algorithmic acceleration is achieved with the fast multipole method (FMM) in conjunction with a boundary element method (BEM) formulation of the continuum electrostatic model. The hardware acceleration is achieved through graphics processors, GPUs. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular recognition : JMR
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2002